Total Anomalous Pulmonary Venous Return Guideline
What the Nurse Caring for a Patient with CHD Needs to Know

T. Lynn Dees, MNSc, APRN, PNP-BC, CPNP-AC
Advanced Practice RN, Pediatric Cardiology,
University of Arkansas for Medical Sciences, Arkansas Children’s Hospital

Jenna Heichel, MSN, APRN, CPNP-AC
Nurse Practitioner, Cardiac Intensive Care Unit,
Children’s National Health System, Washington, DC

Amber Merritt, MSN, RN, RN-BC, CCRN
Clinical Instructor, Cardiac Intensive Care Unit,
Children’s National Health Systems, Washington DC

Nida Oriza, BSN, RN IV
Core Charge Nurse, Cardiothoracic Intensive Care Unit,
Children's Hospital Los Angeles

Melissa B. Jones MSN, RN, APRN, CPNP-AC
Nurse Practitioner, Cardiac Intensive Care Unit,
Children’s National Health System, Washington DC

Embryology
- Rare congenital heart defect occurring in 0.6 to 1.2 per 10,000 live births
- Incidence between 0.7 and 1.5 % of all CHD
- Normal development
 - Lung buds and systemic venous plexus formed at the same time
 - Both drain into the common cardinal and umbilicovitelline venous
 - Lung drainage system becomes the two right and two left pulmonary veins
 - All four join into pulmonary vein confluence (Common pulmonary vein)
 - Portion of the common pulmonary vein incorporated into the wall of the left atrium (LA)
- Total Anomalous Pulmonary Venous Return (TAPVR)
 - Persistent patency of primitive systemic veins
 - Causes failure of pulmonary venous development
 - May lead to persistent connections of the pulmonary venous system to the systemic veins
 - Can occur at almost any point in the central cardinal or umbilicovitelline venous systems
 - Disruption of both cardiac and abdominal vicera early in embryology results in the characteristic congenital anomalies
 - Associated with heterotaxy, particularly with asplenia
Thoracic lymphangiectasia and pulmonary congestion

Anatomy
- Supracardiac (See illustration below)
 - Pulmonary veins connect to right superior vena cava (SVC), azygous vein, left SVC or innominate vein
 - Accounts for 50% of cases

Supracardiac Total Anomalous Pulmonary Venous Return

- Cardiac (See illustration below)
 - Pulmonary veins connect directly to the right atrium (RA) or the coronary sinus (CS)

Intracardiac Anomalous Pulmonary Venous Return

- Infracardiac (See illustration below)
 - Pulmonary venous connect below the diaphragm to intra-abdominal veins
 - Includes portal venous system, ductus venosus or IVC

Infracardiac Total Anomalous Pulmonary Venous Return

© Scientific Software Solutions, 2016. All rights reserved.

- Mixed
 - One of the main lobar pulmonary veins connects to a systemic vein
 - Remaining three veins connect normally
- Obstructed (See above illustration)
 - Most common with infracardiac TAPVR
 - Can occur at any point in the anomalous pathway
 - Causes changes in the pulmonary arterioles
- Increase in arterial muscularity
- Extension of muscle into smaller and more peripheral arteries
- Veins likely to be thick walled with intimal fibrous hyperplasia

- Associated anomalies
 - Tetralogy of Fallot
 - Double Outlet Right Ventricle
 - Hypoplastic Left Heart Syndrome
 - Endocardial fibroelastosis of the LV

Physiology

- Unobstructed
 - Increased pulmonary blood flow
 - Right heart volume load from pulmonary venous return to the right heart
 - Creates left to right shunt physiology
 - Pulmonary vascular resistance (PVR) decreases in the first few week of life
 - Causes increased Qp:Qs leading to heart failure symptoms
 - Untreated, may lead to pulmonary vascular changes and elevated PVR
 - At risk for pulmonary hypertensive crises postoperatively (See Peds/Neo Problem Guidelines on Pediatric Pulmonary Hypertension)

- Obstructed
 - Severe pulmonary venous congestion and small cardiac silhouette
 - Cyanosis and respiratory distress usually presents within minutes to hours after birth
 - Cyanosis profound
 - Followed by:
 - Cardiogenic shock
 - Severe metabolic acidosis
 - Causes right ventricular hypertrophy (RVH)
 - Immediate surgical repair required
 - Pre-operative management:
 - Optimize increased PVR with intubation
 - Correct metabolic and respiratory acidosis
 - Provide sedation and paralysis as needed
 - Consider ECMO prior to surgical repair

Procedures and Interventions

- Diagnostic Procedures
 - Chest radiograph:
 - Prominent right heart with a “snowman” appearance on a frontal view
 - ‘Ground glass’ appearance similar to neonatal respiratory distress syndrome
 - Echocardiography (ECHO)
 - Normal pulmonary venous connections to the left atrium (LA) visualized
Supracardiac lesions can present with:
- Common ascending collecting vein
- Dilated superior vena cava (SVC)
Infracardiac lesions can present with:
- Connection of the common descending collecting vein with the hepatic or portal vein
- Or dilated inferior vena cava (IVC)
Visualization of a connection between the pulmonary venous system and the RA or coronary sinus
- Dilated RA and RV
 - Right-to-left atrial level shunting
 - Angiography
 - May be used when individual pulmonary veins and vertical veins not visualized on ECHO
 - May be indicated if more hemodynamic information is required
 - Computed Axial Tomography (CT) or Magnetic Resonance (MR) angiography
 - CT may be needed to visualize the lung parenchyma and airways
 - MR requires less ionizing radiation, but requires more time and sedation may be needed
 - Both require IV contrast for optimal visualization of the vasculature
- Surgical correction
 - Required
 - Recommended regardless of the degree of obstruction
 - Timing depends on degree of obstruction and condition of the patient
 - Urgent surgical intervention needed if veins are completely obstructed
 - Surgical approach
 - Via median sternotomy
 - Performed under cardiopulmonary bypass with circulatory arrest
 - Surgical procedure varies depending on the anatomy of the defect
 - Supracardiac and infracardiac TAPVR with a common vertical vein
 - Anastomosis formed between the pulmonary venous confluence and the LA
 - Vertical vein ligated and divided
 - Pulmonary veins drain directly into the SVC
 - Intracardiac baffle formed to channel the blood from the RA, across the atrial septum to LA
 - Intracardiac TAPVR to the CS
 - CS and partition between the sinus and RA are incised, and connected to LA
 - Intracardiac TAPV to RA
 - Interatrial septum reconstructed to close the atrial septal opening and direct blood flow from the pulmonary veins directly to LA
 - Rate of reoperation
• Between 10 and 15%
• Due to stenosis of individual pulmonary vein and surgical anastomosis site
• Rarely required after a year following surgical repair

Specific Considerations
• Factors that determine severity of the symptoms are:
 o Presence of other anomalies
 o Presence and severity of obstruction to pulmonary venous drainage
 o Degree of obstruction at the atrial septal level
• Unobstructed pulmonary venous drainage and unrestricted atrial septal communication
 o Signs/symptoms
 ▪ Congestive heart failure
 ▪ Progressive right heart dilation
 ▪ Pulmonary hypertension (See Peds/Neo Problem Guidelines on Pediatric Pulmonary Hypertension)
 o If not managed will lead to irreversible pulmonary vascular obstructive disease (PVOD)
 ▪ Symptoms for PVOD include:
 • Progressive tachypnea
 • Cyanosis
 • Right–sided heart failure
• Obstruction of pulmonary venous drainage
 o Neonates with infracardiac TAPVR
 o High pulmonary pressure with large right-to-left shunt
 o Rapid progressive hypoxemia and hemodynamic collapse
 o Diagnosis
 ▪ Careful attention to history and physical examination findings, chest radiograph and echocardiogram
 ▪ Physical exam: Evaluate for signs that indicate pulmonary blood flow
 • Unobstructed = increased flow
 o Parasternal lift
 o Widely split second heart sound
 o Pulmonary flow murmur and diastolic murmur
 o Mild tachypnea and cyanosis
 • Obstructed pulmonary blood flow
 o Signs of pulmonary edema with or without evidence of hypoperfusion
 ▪ Chest radiograph:
 • Pulmonary arteries appear engorged with or without pulmonary edema
 • Snowman or figure-of-eight cardiac shadow
 o Seen later on in infancy
 ▪ Pulmonary venous connections enlarge
 ▪ Thymus diminishes in size
- Echocardiography:
 - Defines anatomy of TAPVR
 - RV dilatation
 - Absence of pulmonary veins draining into LA
 - Presence of anomalous venous channels or turbulent flow in RA
 - Other abnormal systemic venous structures
- Cardiac catheterization:
 - Useful in patients with multiple cardiac lesions
 - If significant pressure gradient found across atrial septum, a balloon atrial septostomy may allow a delay in surgical repair until patient is adequately resuscitated
- Preoperative Care
 - Pulmonary venous obstruction
 - Surgical emergency requires immediate surgical intervention due to:
 - Progressive hypoxemia
 - Systemic hypo-perfusion
 - Hemodynamic instability
 - Emergency repair optimal
 - Medical management
 - Intubation for hyperventilation and 100% fraction of inspired oxygen concentration (FiO2)
 - Decrease pulmonary vascular resistance
 - Maximize oxygen delivery
 - Inotropic support to assist the dilated and dysfunctional right ventricle
 - Correct metabolic acidosis to improve catecholamine responsiveness
 - Pulmonary vasodilators
 - Controversial in preoperative period
 - Include iNO, magnesium sulfate, prostaglandins
 - Requires close monitoring for untoward effects of worsening cyanosis and systemic hypotension
 - Extracorporeal membrane oxygenation (ECMO) [See Peds/Neo Problem Guidelines on Extracorporeal membrane oxygenation (ECMO)]
 - Patients with severe metabolic derangement and pulmonary hypertension
 - Used to stabilize and correct end-organ dysfunction
 - Improves outcome
- Postoperative Care (See Peds/Neo Problem Guidelines on Postoperative Care, Nutrition, Development Care, Pediatric Pulmonary Hypertension)
 - Goals:
 - Improve cardiac output
 - Manage pulmonary hypertension
Prevent pulmonary hypertensive crisis
Maximize respiratory efficiency

Prevention and management of pulmonary hypertensive crisis (See Peds/Neo Problem Guidelines on Pediatric Pulmonary Hypertension)
- Monitor closely
 - Direct pulmonary arterial pressure (PAP) measurements with intra cardiac PA line (normal PAP is <1/3 systemic pressure)
 - If direct monitoring unavailable, monitor for:
 - Unexplained desaturation
 - Tachycardia
 - High central venous pressure
 - Hypotension
- Manage analgesia
 - Provide optimal level of analgesia and sedation
 - Provide neuromuscular blockage as needed
- Manage ventilation
 - Use mechanical ventilation to maintain functional residual capacity
 - Use enriched inspired oxygen
 - Appropriate amount of PEEP
 - Avoid unnecessary endotracheal suctioning which can cause an acute increase of PVR
 - Prevent respiratory insufficiency
- Manage pulmonary pressures
 - Use intravenous vasodilators as indicated
 - Like nitroprusside (Nipride)
 - Watch for systemic hypotension
 - Use inhaled vasodilators
 - Relax constricted pulmonary vascular smooth muscle
 - Like nitric oxide (iNO)
 - Some patients may not respond
- Prevent acidosis
- Mechanical circulatory support/ ECMO (See Peds/Neo Problem Guidelines for Mechanical Circulatory Support (ECMO)
 - Severe cardiac dysfunction
 - Unresponsive pulmonary hypertension
- Avoid overaggressive volume replacement that may lead to excessive pressure elevation
- Maintain optimal heart rate
 - Maximize cardiac output
 - Low cardiac output occurs as a result of a noncompliant left ventricle with less effective stroke volume per heart beat
 - Chronotropic support with temporary pacing as needed
 - Temporary pacing wires placed postoperatively
- Provide myocardial support
 - Inotropes
- Calcium, especially in neonates
- Continuous infusion medications
 - Such as dopamine, epinephrine
 - Afterload reduction
 - Continuous infusion medications
 - Such as milrinone or nitroprusside (Nipride)
 - Continue family support utilizing principles of family centered care

Long Term Problems/Management

- Surgical mortality rate
 - Infants with unobstructed type - between 5% -10%
 - Infants with obstructed infracardiac type - as high as 20%
 - Most common cause of death
 - Cardiac failure due to pulmonary hypertensive crisis (See Peds/Neo Problem Guidelines on Pediatric Pulmonary Hypertension for postoperative management of pulmonary hypertensive crisis)
 - Risk factors for early postoperative mortality
 - Infracardiac drainage
 - Pulmonary venous obstruction
 - Poor preoperative state including persistent acidosis
- Postoperative pulmonary venous stenosis
 - Infracardiac and mixed type - between 6-11%
 - Management
 - Use of absorbable suture
 - Catheter intervention - Balloon angioplasty and endovascular stent placement
 - Surgical - reoperation
 - Usually occurs within the first 6-12 months after repair
 - Due to pulmonary vein stenosis and obstruction at the anastomosis site
 - Progressive pulmonary vein fibrosis
 - Remains an unpredictable rare cause of death
 - Starts within the first year after surgery
- Arrhythmias (See Adult and Peds/Neo Problem Guidelines for Arrhythmia Management)
 - Rare
 - Supraventricular tachycardia (SVT)
 - Junctional tachycardia
 - Reported in long term survivors
- Long term follow-up
 - Goal to identify for timely intervention
 - Monitor for:
 - Adequate growth,
 - Regression of right ventricular dilatation
 - Reversal of pulmonary vascular abnormalities
 - Identify long term psychological and cognitive abnormalities
• Reported following cardiopulmonary bypass
• Varied incidence
• Better outcomes with early intervention

• Long term survival
 o Excellent results related to:
 ▪ Early diagnosis
 ▪ Increasing surgical expertise in small neonates
 ▪ Improvement in postoperative care
 ▪ Treatment of pulmonary hypertensive crisis

Routine Cardiology Care
• Lifelong clinical evaluation with cardiologist trained in congenital heart disease
• Goals of long term follow-up include:
 o Adequate growth
 o Regression of right ventricular dilatation
 o Reversal of pulmonary vascular abnormalities
• Diagnostic tests
 o Electrocardiogram (ECG)
 ▪ Supraventricular arrhythmias most common
 o Exercise stress test
 ▪ Decrease in aerobic exercise capacity, lung volume and chronotropic response may be noted over time in postoperative patients
 o Echocardiogram (ECHO)
 ▪ Identify residual defects or complications
 ▪ Pulmonary vein obstruction / stenosis
 • Most frequent long term complication
 • Generally confirmed with angiography
 ▪ Ventricular function
 ▪ Pulmonary hypertension as evidenced by septal flattening or displacement
 ▪ Residual atrial septal defect
• Lifestyle Monitoring
 o Cholesterol panel
 o Obesity / weight control
 o Tobacco use / exposure
• Education
 o Assess knowledge
 o Review condition and potential complications
 o Discuss lifelong needs
• Pregnancy (See Adult Problem Guidelines for Management of Pregnancy in ACHD)
 o Requires cardiology evaluation prior to pregnancy to review risks
 o Multidisciplinary coordination necessary
References:

1/2016